FORMALIZING MATHEMATICS IN LEAN
RuTH PLUMER & CARLOS MARTINEZ

ABSTRACT

Over the next few days we’ll work with Lean, a programming language that allow us to prove
theorems (that is, a proof assistant). It is in the fascinating intersection of mathematics and
computer science.

Firstly, a note on these lecture notes: they’ll mostly focus on the theory of dependent types, so
you’ll see little about Lean in them — but fear not: alongside these, during class we’ll be learning
actual Lean to apply the theory described in the notes (and will most likely share the Lean code
for your later use).

1. TYPE SYSTEMS AND HIGHER-ORDER FUNCTIONS

If you have ever played around with a statically typed programming language (so, anything that
is not Python), you may have needed to spend a lot of time specifying the types of your variables;
that is, what sort of things they are. In C-like languages, with their somewhat boring type system,
you must have encountered things like:

e int for integers with a certain precision;
e bool for booleans (i.e. True or False); and then more complex types such as:
e T[] for a list/array of elements of type T

e We could even consider a function such as int add_one(int n) ... as implicitly having
a type: a function that takes ints to ints.

Then, if we go on to cooler languages like Haskell (which happens to have some similarities to
Lean), this idea is taken to its logical extreme:

e Of course we have primitive types such as Integer, Bool, String, etc.

e But now, the creation of compound types can get very robust: for types U and V, you also
have the types [U] (for lists of elements of type U), (U, V) (for pairs whose first component
is of type U and the second of type V'), and the most powerful:

e U —V (for functions that map elements of type U to elements of type V'), exactly mirroring
the notation f:U — V that you may have seen before.

And when we say that the idea is taken to its logical extreme, we mean it: in such languages,
you suddenly can work with higher-order functions with types such as (Integer -> Integer)
-> (Integer -> Integer), that is, a function that takes in a function from integers to integers,
and outputs another function of that type (cool, huh?) and you can just as easily construct a list
containing functions of a certain type...

oo 1 Om



2. THE SiMPLY TYPED LAMBDA CALCULUS

Just like mathematicians have long used sets to construct every other mathematical object, we
could instead consider an universe where (almost) everything is a type (which at this point doesn’t
really seem too different from a set). We’ll start with a simple type system and slowly enrich it.
The adventure begins with the simply typed lambda calculus, which can be seen as a tiny (but
powerful!) programming language of sorts.

Notation. We denote ’x has type T’ by writing x:T. This is called a typing judgment. Further-
more, we write C'2:T to mean that = has type T in the context C' (which could be a list of
typing judgments). Then, we also say that x is an inhabitant of type T.

For now, let’s suppose we already have some primitive types (that is, types that cannot be
decomposed into simpler types), such as Z and Bool (fear not: later on we’ll see how even these
can be constructed!). We’ll consider two sorts of types: function types and product types (strictly
speaking, the simply typed lambda calculus only as function types).

DEFINITION 2.1. (Function types).

Given two types U and V', we can construct the type U — V consisting of functions whose input
has type U and its output has type V. We construct an inhabitant of this type through lambda
abstraction: if x:U and e:V is an expression possibly containing x, funz+— e is the function
whose input is x and its output is e; it has type U = V.

EXAMPLE 2.2. For any type T, we can construct the identity function id;: 7T —T by id:=funz—
x.

EXAMPLE 2.3. Suppose we wanted to make an operator that given a function f:7Z—Z, it gives
us fof:Z—7Z. How? By defining double: (Z— Z) — (Z — Z) such that double:=fun f — (funz—
f(f(x)))! Then, double f = fo f, as expected.

DEFINITION 2.4. (Pair types).

Given two types U and V, we can construct the type U x V' consisting of pairs whose first
component has type U and its second component has type V. In particular, if we have z: U and
y:V, then we can construct (z,y):U x V. For simplicity, suppose that for each pair of types U,V
we also have projection functions fstyy : (UxV)—U and sndyy : (U x V) —V that extract the
first and second components of a pair, respectively.

How can we make functions that take in more than one argument? Given what we’ve explained
thus far, the most conceptually straightforward way is to use the product types (assuming that
we have defined triplets as a pair of a pair and something else, etc.)— so for example, we could
define add: (R x R) — R such that funp — (fst(p) +snd(p)). But the cooler way uses a trick called
currying: We can instead define add:R— (R—R) such that add :=funxz— (funy+— z+y); this way,
add(z)(y) =x+y. The good thing about this approach is that we also get a family of partially
applied functions for free: for each x:R, add(z) is the function that adds x to its input.

oo 2 mo



3. THE CURRY-HOWARD CORRESPONDENCE

Our simple type system is already quite powerful. To see why, let’s now make a few interesting
observations about elements in our types:

1. If we have elements a: A, b: B, then we can construct an inhabitant (a,b): A x B.

2. If, given an element a: A, we can construct an element b: B, then we can construct an
inhabitant (funa—b): A— B.

Now, let’s talk about something that looks seemingly unrelated: propositional logic (given that
this is not a course on logic, we won’t be too detailed — think of propositions as mathematical
statements without quantifiers).

1. If we have a proof a of proposition A and a proof b of proposition B, then we can construct
a proof of AAB (A and B).

2. If, given a proof a of proposition A, we can construct a proof b of proposition B, then we
can construct a proof of A— B (if A, then B).

What this analogy seems to suggest is that in fact, we can think of propositions as types, and
proofs as inhabitants of those types! This is what we call the Curry-Howard Correspondence (or
if you want to be fancier, Curry-Howard Isomorphism — because what we’re actually doing is
treating these analogous structures as identical!)

It’s precisely this little observation that makes Lean possible. And its a very powerful observation:
we can alternate between both perspectives at any time to make things more convenient, as we’ll
see shortly. In summary, what we are saying is this:

1. We have two type constructors: given types A, B, we can construct the types A — B and
Ax B.

2. We have a type "universe’ Prop whose inhabitants (also types) will correspond to propositions
— whenever A, B: Prop, we write AA B instead of A x B.

3. If we have a proposition P :Prop, we call any inhabitant h: P a proof of P.

So we can finally do propositional logic in its full glory, we need to postulate the existence of:

e A type True: Prop with at least one inhabitant 7.
e A type False: Prop with no inhabitants, and for each proposition P, a function of type

False — P. If we somehow obtain an inhabitant of False, we have a contradiction, and we
allow ourselves to then obtain a proof of any proposition!

What about negation? We can actually define =P as P — False and it will work well for us (think
about why).

oo 3 mm



4. EXAMPLE: MoDUS PONENS

Now, let’s try to prove some pieces of classical logic with our new machinery: first, everyone’s
favorite modus ponens: ((P—Q)AP)— Q.

To prove something, we must find an inhabitant. We can proceed as follows:

1. It has a function type, so it must be of the form funh: (P —Q)AP+— _:Q. That is, given
a proof h of (P — Q) AP, we must construct a proof of @ (the placeholder).

2. We can obtain proofs of P — @ and P by applying the previously mentioned functions
fstpo and sndp (we can do this since AAB stands for A x B in this context). That is,
fstpg(h): P— Q and sndpg(h): P.

3. Then, finally, we have that (fstp g (h))(sndp,g(h)):Q, which we can use to fill the placeholder!

4. So we finally have a proof of modus ponens: funh: (P — Q)AP — (fstpg(h))(sndpg(h))!
Don’t worry: Lean has many facilities to make such a proof much more pleasant to write
(but this is more or less what it would look like under the hood).

In conclusion: not only are functions useful, they’re also fun!

Oom 4 00O



5. DEPENDENT TYPES AND PREDICATE LOGIC

Without quantifiers (for all, there exists, ...) there’s really no way to express interesting mathe-
matical statements. We’ll begin by seeing things from the type-theoretical perspective and then
see we'll see how the Curry-Howard Correspondence strikes again.

First some motivation: often in mathematics we find it useful to have functions whose output type
depends on the value of the input. For example, we may want to define a function ZeroVector
that takes in a natural number n:N, and it gives you the zero vector 0 in R™. But thus far,
there’s no way to represent the output type of the ZeroVector that is not a bit clunky or ugly,
since function types assume that the output type is fixed (unless we do something like | J, . R™,
but we have no idea what a set or an infinite union is, yet).

It’s time to define more powerful type constructors (and by the way, the old ones will just be
special cases of these):

DEFINITION 5.1. (Dependent function types, or II-types).

Given a type universeEl U, a type A:U and a family of typeaﬂ B:A—U, we can construct the
type [],.4 B(t) consisting of functions whose input t has type A and their output has type B(t).
To construct inhabitants for this type, we use good old lambda abstraction — we just make sure
that for each input, the output matches the (dependent) output type.

ExXAMPLE 5.2. Going back to ZeroVector, it is a function whose input n has type N and its
output has type R™ — so ZeroVector has type [], R"™.

ExXAMPLE 5.3. Before, it was a bit clunky to say that for each proposition P, we postulate the
existence of a function of type False — P; now, we can just postulate the existence of one function
exFalso: ]| P:Prop(False—> P), from which we can extract all the other functions.

What happens more often, especially when defining mathematical structures, is that we have a
tuple (which we can think of as just as a nested pair) where the type of the later components
depend on the earlier components. For example, a magma is a set (type...) S equipped with a
binary operation o:S xS — S; in other words, a pair (S,0) where S:U for some type universe
U, and o: 5 xS —S. But again, we have no straightforward way to express the type of this
magma, given that the type of the second component actually depends on the value of the first
component. Dependent types to the rescue!

DEFINITION 5.4. (Dependent pair types, or X-types).
Given a type universe U, a type A:U and a family of types B: A— U, we can construct a type
> .4 B(t) consisting of pairs whose first component t has type A and their second component has

type B(t).

ExXAMPLE 5.5. Going back to magmas: it’s a pair whose first component S has type U, and its
second component has type S xS — S (which is a function of S) — therefore, its type would be
YosuSxS—=S.

Exercise 5.1. To extract the components of an inhabitant of a ¥-type, we’ll need to postulate
the existence of the two functions fst and snd — but fortunately, we no longer need them to be
two families of functions, we only need two functions. What would their types be?

IThat is, a type from which we’ll get the types we plan to work with. A good example is Prop!
2Sorry — more fancy/confusing notation is yet to come. By family of types we mean a function that takes in a
parameter and gives you a type.

Om 5 0Om



6. PREDICATES!

As arefresher on predicates, suppose we have the statement " for each integer n, there is a negation
m". In usual set-theoretical notation with quantifiers, we would write this as

(VneZ)(FmeZ)(n+m=0)

In case you haven’t seen quantifiers:

e (VxeS)P(x) stands for "for all z in S, the statement P(x) is true". Writing P(x) essentially
conveys that it depends on = — so for example, if P(n) stood for n+1=2, then P(1) would
stand for 1+1=2.

o (Jx € S)P(x) stands for "there exists an x in S such that the statement P(x) is true".

So unpacking the previous expression, it would read as "for all n € Z, there exists an m € Z such
that n+m=0".

We can note the following about the quantifiers (and let’s use : instead of € because it objectively
looks better):

1. To prove (Vz:S)P(x), given an arbitrary z:.S, we must be able to provide a proof of P(z).
2. To prove (Jz:S)P(z), it suffices to provide z: S and a proof of P(x).

...and, going back to our fancy dependent types:

1. An inhabitant of the type [],.q P(x) must have the form fun(z:S)+— _, where the place-

holder has type P(x) — in other words, in order to obtain an inhabitant of this type, given
an arbitrary x:S, we must be able to provide a term of type P(z).

2. An inhabitant of the type ) .o P(x) must have the form (z,h) where z:S and h: P(x), so
it suffices to provide x and h.

And as you can see, our amazing dependent types behave identically to the quantifiers (when
we’re working in Prop, that is)! So when we’re working with propositions, II-types are universal
quantifiers and X-types are existential quantifiers. Given that n+m=0:Prop (once we define the
symbols such as +,=,0), in type-theoretical notation the old statement becomes:

HZ(n—i—m:O)

n:Z m:7Z
And to prove this statement is just to produce an element of this type.

Om 6 WO



sorry

rw [h]

rw [« h]

rw [h1] at h2

repeat rw [h]
nth _rewrite i [h]
rfl

exact

exact?

assumption

ring

applyh

apply hl at h2

specialize

have h :

intro

7. TAacTiC CHEAT SHEET

Substitutes a proof, throws a warning instead

If h is an assumption of the form of an equation and the LHS appears

somewhere in the goal, rw[h] will substitute the first occurrence of the LHS of h

by the RHS of h.

Replaces the first occurrence of the RHS of the assumption h in the goal
by the LHS of h.

Replaces the first occurrence of the LHS of the assumption hl in h2
by the RHS of hl.

Replaces every occurrence of the LHS of h in the goal by its RHS.
Rewrites with h at the ith occurrence of the LHS of h in the goal.
Proves an equation of the form a =a.

Proves the goal if it is identical to the hypothesis / lambda term / lemma
given as an argument.

Searches for a lemma in Mathlib which can prove the current goal.
Proves the goal if it is identical to some assumption.

Immediately proves an identity that can be proved by elementary term
manipulation (without using assumptions or identities about functions)

in the integers, rational numbers or reals (or general rings).

If h is an assumption of the form P — @) and the goal is of the form @),
apply h replaces the goal by P.

If h1 is an assumption of the form P — @ and the assumption h2
is of the form P, apply hl at h2 changes h2 to Q.

If hl is an assumption of the form P — () and h2 is an assumption
of the form P, specialize hl h2 changes hl to Q.

If h is a hypothesis of the form Vz, A(z) and z is a variable
of the correct type, specialize h x changes h to A(xz).

Introduces a new assumption h (with proof!)

If the goal is of the form P — @), intro h introduces an assumption h : P
and changes the goal into Q.

If the goal is of the form Vz, A(z), intro x introduces a variable x

and changes the goal into A(z).

Om 7 HE



constructor

left/right

obtain

exfalso

contradiction

by contrah

by casesh: P

push neg

ext x

calc
linarith

trans

gcongr
congr

induction

If the goal is of the form P A @), constructor introduces two different branches
of the proof: one with goal P and one with goal Q.

If the goal is of the form PV @), left or right changes the goal
to P or @), respectively.

If h is a hypothesis of the form PAQ, obtain (h1, h2) :=h yields
two assumptions hl:P and h2:Q.

If h is a hypothesis of the form PV @, obtain h1|h2 :=h introduces
two different branches of the proof: one with hypothesis hl : P
and one with hypothesis h2 : Q.

If h is a hypothesis of the form 3z, P(x), obtain (x, hx) :=h yields
a variable x and a hypothesis hx : P(x).

Replaces the goal by False (useful if you suspect
that the hypotheses are contradictory).

Proves the goal if there are two immediately contradictory assumptions.
Starts a proof by contradiction:

Introduces a new hypothesis which is the negation of the current goal
and replaces the current goal by False.

Starts two branches of the proof:

One with an additional assumption h : P and

one with an additional assumption h : Q.

Pushes negations inside quantifiers and connectives.

If the goal is of the form s; = sy with s and g sets, ext x
replaces the goal by x €s; <> XxE sp.

Creates an environment in which one can proof a chain of equations.
Proves the goal if it is a linear combination from the assumptions.

When proving an inequality x <y, transy lets you prove
x <y and y <z instead.

Uses monotonicity of functions in order to prove inequalities.
Similar to gcongr, but for equations.
Proves a statement over an inductive type by induction by giving

seperate proofs the base case (zero) and the induction step succ
with induction hypothesis ih.

D 8 0O



REFERENCES
[1] The Univalent Foundations Program (2013) Homotopy Type Theory: Univalent Foundations
of Mathematics — http://homotopytypetheory.org/book/

[2] Avigad, J. Massot, P. (2025) Mathematics in Lean — https://leanprover-community.
github.io/mathematics_in_lean/

[3] Baanen, A. et al. (2025) The Hitchhiker’s Guide to Logical Verification — https:
//github.com/lean-forward/logical_verification_2025/blob/main/hitchhikers_
guide_2025_desktop.pdf

HD 9 Om


http://homotopytypetheory.org/book/
https://leanprover-community.github.io/mathematics_in_lean/
https://leanprover-community.github.io/mathematics_in_lean/
https://github.com/lean-forward/logical_verification_2025/blob/main/hitchhikers_guide_2025_desktop.pdf
https://github.com/lean-forward/logical_verification_2025/blob/main/hitchhikers_guide_2025_desktop.pdf
https://github.com/lean-forward/logical_verification_2025/blob/main/hitchhikers_guide_2025_desktop.pdf

	Type Systems and Higher-Order Functions
	The Simply Typed Lambda Calculus
	The Curry-Howard Correspondence
	Example: Modus Ponens
	Dependent Types and Predicate Logic
	Predicates!
	Tactic Cheat Sheet

