# PROBLEM SET IV: THE FINITE CALCULUS

October 26, 2025

Let's develop a *discrete* analogue to calculus that will allow us to evaluate sums and recurrences more robustly.

Given a function  $f: \mathbb{Z} \to \mathbb{R}$  (note that we have no other constraints!), let's define three analogues to concepts from calculus:

- 1. We define the difference of f,  $\Delta f : \mathbb{Z} \to \mathbb{R}$ , such that  $(\Delta f)(x) := f(x+1) f(x)$  [analogue of the derivative]
- 2. We define the *anti-difference of f*, written as  $\sum f(x)\delta x$ , as the class of functions F such that  $\Delta F = f$ . [analogue of the anti-derivative]
- 3. We define the *definite sum of f from a to b*, by  $\sum_{a}^{b} f(x) \delta x := \sum_{k=a}^{b-1} f(k)$  (in particular, for  $b \leq a$  we define this to be 0). [analogue of the definite integral]

Finally, we define the *shift of f*,  $\mathbf{E}f : \mathbb{Z} \to \mathbb{R}$ , such that  $(\mathbf{E}f)(x) := f(x+1)$  (note – this has no analogue in usual calculus). It's straightforward to check that these behave like derivatives and integrals in many ways:

- Given  $f,g:\mathbb{Z}\to\mathbb{R}$ , we have that  $\Delta(f+g)=\Delta f+\Delta g$ , and also, for any  $\alpha\in\mathbb{R}$ ,  $\Delta(\alpha f)=\alpha(\Delta f)$ . Therefore,  $\Delta$  is a linear operator. The same is true of anti-differences (though one must be careful, since we usually speak of an anti-difference instead of the anti-difference).
- Multiplication is unfortunately not as well-behaved as usual:

$$\begin{split} \Delta(fg)(n) &= (fg)(n+1) - (fg)(n) \\ &= f(n+1)g(n+1) - f(n)g(n) \\ &= f(n+1)g(n+1) - f(n+1)g(n) + f(n+1)g(n) - f(n)g(n) \\ &= f(n+1)(g(n+1) - g(n)) + g(n)(f(n+1) - f(n)) \\ &= (\mathbf{E}f)(n)(\Delta g)(n) + g(n)(\Delta f)(n) \end{split}$$

And therefore,  $\Delta fg = \Delta f \cdot g + \mathbf{E} f \cdot \Delta g$ . Close enough, I guess.

**INSTRUCTIONS:** No need to solve them fully, just ponder them. We'll probably go over the solutions of a few of them during class. Have fun!

## Problem 1. (The fundamental theorems of finite calculus, pt. I)

We are given  $f: \mathbb{Z} \to \mathbb{R}$ . Let  $F: \mathbb{Z} \to \mathbb{R}$  be such that  $F(t) := \sum_{k=1}^{t} f(x) \delta x$ , for some

integer k. Verify that  $\Delta F = f$ , and therefore  $F \in \sum f(x) \delta x$ . This gives us a way to obtain anti-differences for free.

#### Problem 2. (The fundamental theorems of finite calculus, pt. II)

Let  $f: \mathbb{Z} \to \mathbb{R}$ , and let  $F: \mathbb{Z} \to \mathbb{R}$  be *any* anti-difference of F (that is,  $\Delta F = f$ ). Prove that  $\sum_a^b f(x) \delta x = F(b) - F(a)$ . This gives us a way to obtain definite sums for free if we happen to know an anti-difference.

### Problem 3. (Falling powers)

Unfortunately, if we try to compute  $\Delta(x^n)$ , we obtain  $nx^{n-1} + \text{junk}$  in  $\Theta(x^{n-2})$ , which means that the usual power rule doesn't work as expected. However, if we can define the *falling power* 

$$x^{\underline{n}} := x(x-1)...(x-(n-1))$$

Verify that  $\Delta x^{\underline{n}} = nx^{\underline{n-1}}$ . Immediately, we get that  $\frac{x^{\underline{n+1}}}{n+1}$  is an anti-difference of  $x^{\underline{n}}$ . Equipped with these facts, find the general formula for

$$\sum_{k=1}^{n} k^3$$

#### Problem 4. (Summation by parts)

Recall that we found that  $\Delta fg = \Delta f \cdot g + \mathbf{E} f \cdot \Delta g$ . Can you use this to obtain a discrete analog to integration by parts

$$\int uv' = uv - \int u'v$$

Furthermore, compute  $\Delta(b^x)$  for a particular base b.

Try to obtain a closed-form formula for

$$\sum_{k=1}^{n} k2^k$$