ProBLEM SET VI: THE MULTIPLICATIVE
STRUCTURE OF 7,

November 15, 2025

Thus far, we’ve managed to prove the following:

Theorem (Fundamental Theorem of Arithmetic). For every positive integer
n > 2, there exists a unique tuple (py, ..., p;,) such that:

1. p; < ... < pyg; that is, it’s a non-decreasing sequence,

2. Hi:l p; = m; that is, it’s a factorization of n,

3. and py, ..., p are all prime.

This means that we can very efficiently encode a positive integer n as follows:

Definition (Canonical representation). Given n € Z*, we define its
canonical representation as an infinite sequence (O‘i)z , such that oy, is the
number of times that the kth prime appears in the prime factorization of n (in
other words, its exponent). Given that the prime factorization is finite, this
sequence is eventually constantly 0.

Then, the Fundamental Theorem of Arithmetic is telling us that this canonical
representation exists and is unique; so let’s denote it as rep(n) (though this
notation is non-standard; but we’ll use it for convenience). Finally, we define

rep(1) = (0,0,0,...), so now all positive integers have a canonical representation.

As another notational convenience, given infinite sequences of integers a = (ai)z 1
and b = (b, )°° and a binary function f : Z X Z — Z, let’s denote by f(a,b) the
sequence (f (al, bz)) | consisting of the component-wise application of f; and
given a binary relatlon R C Z x Z, let’s also say that a Rb whenever a, Rb, holds for

all 4.

Theorem (Properties of the canonical representation). Given positive integers
a,b € Z", we have the following:

* rep(ab) = rep(a) + rep(b) (so it behaves like a logarithm!)

* For integersn > 0, rep(a™) = n rep(a).

* rep(ged(a, b)) = min{rep(a), rep(b)}.

* Ifa | b, thenrep(2) = rep(b) — rep(a).

» We have that a | b if and only ifrep(a) < rep(b).

PRroOF. Left as an optional exercise. (J



Isn’t that nice! The only problem is that if we don’t have the canonical
representation of n at hand, computing rep(n) can be very costly (integer
factorization is a famously difficult problem). Otherwise, this is very useful.

Finally, let’s introduce two pieces of notation that are actually standard: for a prime
p, we define the p-adic valuation v,(n) as the exponent of p in the prime
factorization of n. Note that this will be an entry of rep(n), so p-adic valuations
inherit all the properties from rep (although we’d now say that a | b if and only if,

for all prime p, v,(a) < v, (b)).

Another important piece of notation is the Iverson bracket: given a statement S, we
say that [S] = 1if S is true, and [S] = 0 if S is false. This is generally quite useful in
double counting arguments. We can make the following observations connecting
regarding the Iverson bracket (think about why these must be the case):

Observation 1. For alln € Z* andp prime, v,(n) = >~ [p* | n].
Observation 2. For n,d € Z*, n divd = 3" [d | k].

Now, we can try our luck at computing v, (n!):

v,(n!) =v, (ﬁ z)
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[p? | i] by Observation 1
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[p’ | i] by Observation 2

7

Il
—_

(e 108

Il
—

(n div p?)
j

This identity is known as Legendre’s formula.

InsTRUCTIONS: No need to solve them fully, just ponder them. We’ll probably go
over the solutions of a few of them during class. Have fun!

Problem 1. (Canonical representations, optional)

Prove the presented properties of canonical representations. I'd recommend doing
so in the presented order, since the property rep(ab) = rep(a) + rep(b) greatly
simplifies the proofs of the others.



Problem 2. (Folklore classic)
When writing 100! in base 10, how many zeroes are there at the end?

Problem 3. (Kummer's theorem)
First, prove that for a,b,d € Z*,

(a+b)divd—adivd—>bdivd=[amodd)+ (bmodd) > d].

For nonnegative integers n, k such that 0 < k < n, we may define the binomial
coefficient () non-recursively as

n n!
(k) T k(n—k)!

Use this to find an expression (which may involve Iverson brackets) for v, ( ( “Ib))
for prime p and non-negative integers a, b.

Problem 4. (Exploring central binomial coefficients)
It is well-known that (251 ) + (21" ) e+ (32) = 227 = 4", and in particular, the
central binomial coefficient (2:) will be the largest term in the sum, meaning that

(2:) > % (why does it entail this?)
Prove that for prime p and n € Z*, we have that
pl’ p(%? ) < 2n

What does this tell us, if anything, about the number of primes up to 2n (that is,
m(2n))?



