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Thus far, we’ve managed to prove the following:

Theorem (Fundamental Theorem of Arithmetic). For every positive integer 

𝑛 ≥ 2, there exists a unique tuple (𝑝1, …, 𝑝𝑘) such that:

1. 𝑝1 ≤ … ≤ 𝑝𝑘; that is, it’s a non-decreasing sequence,

2. ∏𝑘
𝑖=1 𝑝𝑖 = 𝑛; that is, it’s a factorization of 𝑛,

3. and 𝑝1, …, 𝑝𝑘 are all prime.

This means that we can very efficiently encode a positive integer 𝑛 as follows:

Definition (Canonical representation). Given 𝑛 ∈ ℤ+, we define its 

canonical representation as an infinite sequence (𝛼𝑖)
∞
𝑖=1 such that 𝛼𝑘 is the 

number of times that the 𝑘th prime appears in the prime factorization of 𝑛 (in 

other words, its exponent). Given that the prime factorization is finite, this 

sequence is eventually constantly 0.

Then, the Fundamental Theorem of Arithmetic is telling us that this canonical 

representation exists and is unique; so let’s denote it as 𝐫𝐞𝐩(𝑛) (though this 

notation is non-standard; but we’ll use it for convenience). Finally, we define 

𝐫𝐞𝐩(1) = (0, 0, 0, …), so now all positive integers have a canonical representation.

As another notational convenience, given infinite sequences of integers 𝑎 = (𝑎𝑖)
∞
𝑖=1 

and 𝑏 = (𝑏𝑖)
∞
𝑖=1, and a binary function 𝑓 : ℤ × ℤ → ℤ, let’s denote by 𝑓(𝑎, 𝑏) the 

sequence (𝑓(𝑎𝑖, 𝑏𝑖))
∞
𝑖=1, consisting of the component-wise application of 𝑓 ; and 

given a binary relation 𝑅 ⊆ ℤ × ℤ, let’s also say that 𝑎𝑅𝑏 whenever 𝑎𝑖𝑅𝑏𝑖 holds for 

all 𝑖.

Theorem (Properties of the canonical representation). Given positive integers 

𝑎, 𝑏 ∈ ℤ+, we have the following:

• 𝐫𝐞𝐩(𝑎𝑏) = 𝐫𝐞𝐩(𝑎) + 𝐫𝐞𝐩(𝑏) (so it behaves like a logarithm!)

• For integers 𝑛 ≥ 0, 𝐫𝐞𝐩(𝑎𝑛) = 𝑛 𝐫𝐞𝐩(𝑎).
• 𝐫𝐞𝐩(gcd(𝑎, 𝑏)) = min{𝐫𝐞𝐩(𝑎), 𝐫𝐞𝐩(𝑏)}.

• If 𝑎 | 𝑏, then 𝐫𝐞𝐩( 𝑏
𝑎) = 𝐫𝐞𝐩(𝑏) − 𝐫𝐞𝐩(𝑎).

• We have that 𝑎 | 𝑏 if and only if 𝐫𝐞𝐩(𝑎) ≤ 𝐫𝐞𝐩(𝑏).

Proof. Left as an optional exercise. □



Isn’t that nice! The only problem is that if we don’t have the canonical 

representation of 𝑛 at hand, computing 𝐫𝐞𝐩(𝑛) can be very costly (integer 

factorization is a famously difficult problem). Otherwise, this is very useful.

Finally, let’s introduce two pieces of notation that are actually standard: for a prime 

𝑝, we define the 𝑝-adic valuation 𝜈𝑝(𝑛) as the exponent of 𝑝 in the prime 

factorization of 𝑛. Note that this will be an entry of 𝐫𝐞𝐩(𝑛), so 𝑝-adic valuations 

inherit all the properties from 𝐫𝐞𝐩 (although we’d now say that 𝑎 | 𝑏 if and only if, 

for all prime 𝑝, 𝜈𝑝(𝑎) ≤ 𝜈𝑝(𝑏)).

Another important piece of notation is the Iverson bracket: given a statement 𝑆, we 

say that [𝑆] = 1 if 𝑆 is true, and [𝑆] = 0 if 𝑆 is false. This is generally quite useful in 

double counting arguments. We can make the following observations connecting 

regarding the Iverson bracket (think about why these must be the case):

Observation 1. For all 𝑛 ∈ ℤ+ and 𝑝 prime, 𝜈𝑝(𝑛) = ∑∞
𝑘=1[𝑝

𝑘 | 𝑛].

Observation 2. For 𝑛, 𝑑 ∈ ℤ+, 𝑛 div 𝑑 = ∑𝑛
𝑘=1[𝑑 | 𝑘].

Now, we can try our luck at computing 𝜈𝑝(𝑛!):

𝜈𝑝(𝑛!) = 𝜈𝑝(∏
𝑛

𝑖=1
𝑖)

= ∑
𝑛

𝑖=1
𝜈𝑝(𝑖) by the properties of 𝐫𝐞𝐩

= ∑
𝑛

𝑖=1
∑
∞

𝑗=1
[𝑝𝑗 | 𝑖] by Observation 1

= ∑
∞

𝑗=1
∑

𝑛

𝑖=1
[𝑝𝑗 | 𝑖] by Observation 2

= ∑
∞

𝑗=1
(𝑛 div 𝑝𝑗)

This identity is known as Legendre’s formula.

Instructions: No need to solve them fully, just ponder them. We’ll probably go 

over the solutions of a few of them during class. Have fun!

Problem 1. (Canonical representations, optional)

Prove the presented properties of canonical representations. I’d recommend doing 

so in the presented order, since the property 𝐫𝐞𝐩(𝑎𝑏) = 𝐫𝐞𝐩(𝑎) + 𝐫𝐞𝐩(𝑏) greatly 

simplifies the proofs of the others.



Problem 2. (Folklore classic)

When writing 100! in base 10, how many zeroes are there at the end?

Problem 3. (Kummer's theorem)

First, prove that for 𝑎, 𝑏, 𝑑 ∈ ℤ+,

(𝑎 + 𝑏) div 𝑑 − 𝑎 div 𝑑 − 𝑏 div 𝑑 = [(𝑎 mod 𝑑) + (𝑏 mod 𝑑) ≥ 𝑑].

For nonnegative integers 𝑛, 𝑘 such that 0 ≤ 𝑘 ≤ 𝑛, we may define the binomial 

coefficient (𝑛
𝑘 ) non-recursively as

(𝑛
𝑘

) ≔ 𝑛!
𝑘!(𝑛 − 𝑘)!

Use this to find an expression (which may involve Iverson brackets) for 𝜈𝑝((𝑎+𝑏
𝑎 )) 

for prime 𝑝 and non-negative integers 𝑎, 𝑏.

Problem 4. (Exploring central binomial coefficients)

It is well-known that (2𝑛
0 ) + (2𝑛

1 )… + (2𝑛
2𝑛) = 22𝑛 = 4𝑛; and in particular, the 

central binomial coefficient (2𝑛
𝑛 ) will be the largest term in the sum, meaning that 

(2𝑛
𝑛 ) ≥ 4𝑛

2𝑛  (why does it entail this?)

Prove that for prime 𝑝 and 𝑛 ∈ ℤ+, we have that

𝑝𝜈𝑝(2𝑛
𝑛 ) ≤ 2𝑛

What does this tell us, if anything, about the number of primes up to 2𝑛 (that is, 

𝜋(2𝑛))?


