PROBLEM SET II: SOLVING RECURRENCES

October 11, 2025

Suppose that we wanted to solve the recurrence (without caring for the initial values):

$$R_n = k_1 R_{n-1} + k_2 R_{n-2} + ... + k_{\ell} R_{n-\ell}$$
 for fixed $k_1, ..., k_{\ell} \in \mathbb{R}, n \ge \ell$

We can make two very interesting observations:

- 1. If sequences $(f_n)_{n=1}^{\infty}$, $(g_n)_{n=1}^{\infty}$ satisfy this recurrence, then the sequence $(f_n+g_n)_{n=1}^{\infty}$ satisfies this recurrence.

 2. If the sequence $(f_n)_{n=1}^{\infty}$ satisfies this recurrence, then for all $\alpha \in \mathbb{R}$, $(\alpha f_n)_{n=1}^{\infty}$
- also satisfies this recurrence.

Formally, this means that the set of solutions to this recurrence form a vector space over \mathbb{R} . The observations give us a good plan: to find a solution to the given recurrence with given initial values, we just need to find any (or a few) solutions to the recurrence that may have other initial values but that we can manipulate using these operations into the initial values we want.

CLAIM. If $\lambda \in \mathbb{R}$ has the property that $\lambda^{\ell} = k_1 \lambda^{\ell-1} + k_2 \lambda^{\ell-2} + ... + k_{\ell}$ then $(\lambda^n)_{n=1}^{\infty}$ is a solution to the recurrence.

PROOF. Multiplying by $\lambda^{n-\ell}$ on both sides, we obtain the recurrence that the sequence must satisfy.

As a good example, recall that the Fibonacci sequence is defined through the recurrence $F_n = F_{n-1} + F_{n-2}$ (and initial values which we don't care about at the moment), which happens to be of the form above; therefore, the solutions $\varphi =$ $\frac{1+\sqrt{5}}{2}$, $\psi=\frac{1-\sqrt{5}}{2}$ to the quadratic $\lambda^2=\lambda+1$ have the property that the sequences $(\varphi_1^n)_{n=1}^\infty$ and $(\varphi_2^n)_{n=1}^\infty$ satisfy the Fibonacci recurrence. However, note that:

$$\begin{cases} F_0 = 0 \text{ and } F_1 = 1\\ \varphi^0 = 1 \text{ and } \varphi^1 = \varphi\\ \psi^0 = 1 \text{ and } \psi^1 = \psi \end{cases}$$

So, we're not done yet. Now, by the observations, for all $\alpha, \beta \in \mathbb{R}$, $(\alpha \varphi^n + \beta \psi^n)_{n=1}^{\infty}$ is a solution to the recurrence, meaning that if we find solutions α, β to the system of linear equations

$$\begin{cases} \alpha + \beta = 0 \\ \alpha \varphi + \beta \psi = 1 \end{cases}$$

then $(\alpha \varphi^n + \beta \varphi^n)_{n=1}^\infty$ will precisely be the Fibonacci sequence, because it has the correct initial values and it satisfies the recurrence.

Instructions: No need to solve them fully, just ponder them. We'll probably go over the solutions of a few of them during class. Have fun!

Problem 1. (Closed form of Fibonacci, pt. I)

Solve the above system of equations to prove that

$$F_n = \frac{\varphi^n - \psi^n}{\sqrt{5}}$$
 for all integers $n \ge 0$.

Problem 2. (Closed form of Fibonacci, pt. II)

We can observe the following two things:

- 1. For all $n\in\mathbb{Z}_{\geq 0}$, F_n is an integer. 2. In general, $E(n)=\left|\frac{\psi^n}{\sqrt{5}}\right|$ seems to be quite small.

Try to find a bound for E(n) that allows you to find an even simpler closed form expression for F_n (using the one found in Problem 1).

Problem 3. (Limitations of the method)

The method is actually severely limited. Consider the sequence ${\cal R}_n=n,$ which satisfies the recurrence $R_n=R_{n-1}+1$ for $n\geq 1.$ This is not a recurrence of the desired form, but we can make it so by subtracting ${\cal R}_{n-1}={\cal R}_{n-2}+1$ from it, to obtain $R_n-R_{n-1}=R_{n-1}-R_{n-2}$, or equivalently $R_n=2R_{n-1}-R_{n-2}$. What happens if we try to apply the method to this recurrence? For what recurrences can we guarantee that the sequence will work well?